Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5773355 | Linear Algebra and its Applications | 2017 | 63 Pages |
Abstract
Let A be a nonnegative symmetric 5Ã5 matrix with eigenvalues λ1â¥Î»2â¥Î»3â¥Î»4â¥Î»5. We show that if âi=15λiâ¥12λ1 then λ3â¤âi=15λi. McDonald and Neumann showed that λ1+λ3+λ4â¥0. Let Ï=(λ1,λ2,λ3,λ4,λ5) be a list of decreasing real numbers satisfying:
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Raphael Loewy, Oren Spector,