Article ID Journal Published Year Pages File Type
5774092 Journal of Differential Equations 2017 33 Pages PDF
Abstract
This paper establishes the global well-posedness of the nonlinear Fokker-Planck equation for a noisy version of the Hegselmann-Krause model. The equation captures the mean-field behavior of a classic multiagent system for opinion dynamics. We prove the global existence, uniqueness, nonnegativity and regularity of the weak solution. We also exhibit a global stability condition, which delineates a forbidden region for consensus formation. This is the first nonlinear stability result derived for the Hegselmann-Krause model.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , , ,