Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5775363 | Advances in Applied Mathematics | 2018 | 26 Pages |
Abstract
In recent years increasing attention has been paid on the area of supercharacter theories, especially to those of the upper unitriangular group. A particular supercharacter theory, in which supercharacters are indexed by set partitions, has several interesting properties, which make it object of further study. We define a natural generalization of the Plancherel measure, called superplancherel measure, and prove a limit shape result for a random set partition according to this distribution. We also give a description of the asymptotical behavior of two set partition statistics related to the supercharacters. The study of these statistics when the set partitions are uniformly distributed has been done by Chern, Diaconis, Kane and Rhoades.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Dario De Stavola,