| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 5775366 | Advances in Applied Mathematics | 2018 | 20 Pages |
Abstract
We provide a combinatorial derivation of the exponential growth constant for counting sequences of lattice path models restricted to the quarter plane. The values arise as bounds from analysis of related half planes models. We give explicit formulas, and the bounds are provably tight. The strategy is easily generalizable to cones in higher dimensions, and has implications for random generation.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Samuel Johnson, Marni Mishna, Karen Yeats,
