Article ID Journal Published Year Pages File Type
5775506 Applied Mathematics and Computation 2017 10 Pages PDF
Abstract
Let G=(V,E) be a connected graph. A vertex w ∈ V distinguishes two elements (vertices or edges) x, y ∈ E ∪ V if dG(w, x) ≠ dG(w, y). A set S of vertices in a connected graph G is a mixed metric generator for G if every two distinct elements (vertices or edges) of G are distinguished by some vertex of S. The smallest cardinality of a mixed metric generator for G is called the mixed metric dimension and is denoted by dimm(G). In this paper we consider the structure of mixed metric generators and characterize graphs for which the mixed metric dimension equals the trivial lower and upper bounds. We also give results about the mixed metric dimension of some families of graphs and present an upper bound with respect to the girth of a graph. Finally, we prove that the problem of determining the mixed metric dimension of a graph is NP-hard in the general case.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,