Article ID Journal Published Year Pages File Type
5775622 Applied Mathematics and Computation 2017 21 Pages PDF
Abstract
In this article, we study the numerical solution of singularly perturbed 2D degenerate parabolic convection-diffusion problems on a rectangular domain. The solution of this problem exhibits parabolic boundary layers along x=0,y=0 and a corner layer in the neighborhood of (0, 0). First, we use an alternating direction implicit finite difference scheme to discretize the time derivative of the continuous problem on a uniform mesh in the temporal direction. Then, to discretize the spatial derivatives of the resulting time semidiscrete problems, we apply the upwind finite difference scheme on a piecewise-uniform Shishkin mesh. We derive error estimate for the proposed numerical scheme, which shows that the scheme is ε-uniformly convergent of almost first-order (up to a logarithmic factor) in space and first-order in time. Some numerical results have been carried out to validate the theoretical results.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,