Article ID Journal Published Year Pages File Type
5776000 Applied Mathematics and Computation 2017 11 Pages PDF
Abstract
Magnetohydrodynamic (MHD) mixing, which is one of the most active mixing methods in a microfluidic system, can be used to optimize the mixing of a reagent and phosphate-buffered solution (PBS) within a short time. The aim of this study is to investigate the capability of MHD mixing with respect to the shape and configuration of the electrodes, the applied voltage, and the height of the micromixer. A reagent that fills the mixer is considered for mixing with the PBS. The mixing capabilities of six different electrode configurations are first quantitatively evaluated based on a mixing index. The configuration determined to be the most effective is then used to evaluate the mixing capability with respect to the applied voltage and height of the micromixer. The results of this study confirm that numerical analysis can be used to determine the optimal MHD mixing conditions for various electrode geometries.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,