Article ID Journal Published Year Pages File Type
5776210 Journal of Computational and Applied Mathematics 2017 12 Pages PDF
Abstract
Error estimates for approximations of solutions of Laplace's equation with Dirichlet, Robin or Neumann boundary value conditions are described. The solutions are represented by orthogonal series using the harmonic Steklov eigenfunctions. Error bounds for partial sums involving the lowest eigenfunctions are found. When the region is a rectangle, explicit formulae for the Steklov eigenfunctions and eigenvalues are known. These were used to find approximations for problems with known explicit solutions. Results about the accuracy of these solutions, as a function of the number of eigenfunctions used, are given.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,