Article ID Journal Published Year Pages File Type
5776332 Journal of Computational and Applied Mathematics 2017 17 Pages PDF
Abstract
We study W1,p Lagrange interpolation error estimates for general quadrilateral Qk finite elements with k≥2. For the most standard case of p=2 it turns out that the constant C involved in the error estimate can be bounded in terms of the minimal interior angle of the quadrilateral. Moreover, the same holds for any p in the range 1≤p<3. On the other hand, for 3≤p we show that C also depends on the maximal interior angle. We provide some counterexamples showing that our results are sharp.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,