Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5776865 | Discrete Mathematics | 2017 | 11 Pages |
Abstract
We establish a divide-and-conquer bound for the aggregate's quality and algebraic connectivity measures, as defined for weighted undirected graphs. Aggregate's quality is defined on a set of vertices and, in the context of aggregation-based multigrid methods, it measures how well this set of vertices is represented by a single vertex. On the other hand, algebraic connectivity is defined on a graph, and measures how well this graph is connected. The considered divide-and-conquer bound for aggregate's quality relates the aggregate's quality of a union of two disjoint sets of vertices to the aggregate's quality of the two sets. Likewise, the bound for algebraic connectivity relates the algebraic connectivity of the graph induced by a union of two disjoint sets of vertices to the algebraic connectivity of the graphs induced by the two sets.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
Artem Napov,