Article ID Journal Published Year Pages File Type
5778266 Journal of Applied Logic 2017 38 Pages PDF
Abstract
The modal characterization theorem by J. van Benthem characterizes classical modal logic as the bisimulation invariant fragment of first-order logic. In this paper, we prove a similar characterization theorem for intuitionistic modal logic. For this purpose we introduce the notion of modal asimulation as an analogue of bisimulations. The paper treats four different fragments of first-order logic induced by their respective versions of Kripke-style semantics for modal intuitionistic logic. It is shown further that this characterization can be easily carried over to arbitrary first-order definable subclasses of classical first-order models.
Related Topics
Physical Sciences and Engineering Mathematics Logic
Authors
,