Article ID Journal Published Year Pages File Type
5788657 Science Bulletin 2017 6 Pages PDF
Abstract

Time reversal in quantum or classical systems described by an Hermitian Hamiltonian is a physically allowed process, which requires in principle inverting the sign of the Hamiltonian. Here we consider the problem of time reversal of a subsystem of discrete states coupled to an external environment characterized by a continuum of states, into which they generally decay. It is shown that, by flipping the discrete-continuum coupling from an Hermitian to a non-Hermitian interaction, thus resulting in a non unitary dynamics, time reversal of the subsystem of discrete states can be achieved, while the continuum of states is not reversed. Exact time reversal requires frequency degeneracy of the discrete states, or large frequency mismatch among the discrete states as compared to the strength of indirect coupling mediated by the continuum. Interestingly, periodic and frequent switch of the discrete-continuum coupling results in a frozen dynamics of the subsystem of discrete states.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
,