Article ID Journal Published Year Pages File Type
5810114 European Journal of Pharmaceutical Sciences 2013 14 Pages PDF
Abstract

Macrolones are a new class of antimicrobial compounds consisting of a macrolide scaffold linked to a 4-quinolone-3-carboxylic acid moiety via C(4″) position of a macrolide. As macrolides are known to possess favorable pharmacokinetic properties by accumulating in inflammatory cells, in this study we determined the intensity of accumulation in human polymorphonuclear leukocytes (PMNs) of 57 compounds of the macrolone class and analyzed the relationship between the molecular structure and this cellular pharmacokinetic property.Accumulation of macrolones ranged from 0 to 5.5-fold higher than the standard macrolide azithromycin. Distinct structural features in all three considered molecule parts: the macrolide scaffold, quinolone moiety and the linker, affect cellular accumulation. Interestingly, while the parent macrolide, azithromycin, accumulates approximately 3-fold more than clarithromycin, among macrolones all clarithromycin derivatives accumulated in PMNs significantly more than their azithromycin counterparts.Modeling cellular accumulation of macrolones with simple molecular descriptors, as well as with the measured octanol-water distribution coefficient, revealed that the number of hydrogen bond donors and secondary amide groups negatively contribute to macrolone accumulation, while lipophilicity makes a positive contribution.

Graphical abstractDownload high-res image (139KB)Download full-size image

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , , , , ,