Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5810285 | European Journal of Pharmaceutical Sciences | 2009 | 11 Pages |
An attempt was made to develop a new therapeutic delivery system which would play a dual role of attenuating MMP activity in the wounds and also prevent infection by controlled delivery of antimicrobials. A catechol type MMP inhibitor 2,3-dihydroxybenzoic acid (DHBA) was conjugated to gelatin microspheres using EDC/NHS as coupling agents. The potential of the modified gelatin microspheres (DHB-MS) to attenuate the proteases such as MMP 2 and MMP 9 in the diabetic wound tissues was investigated by gelatin zymography. Further the modified microspheres were loaded with doxycycline and impregnated in a reconstituted collagen scaffold as novel wound dressing. The in vitro release behavior of doxycycline from both DHB-MS and DHB-MS impregnated collagen scaffold was investigated. DHB-MS when incubated with the tissue lysate for 6Â h displayed the complete inhibition of the MMPs in the tissue lysate. The in vitro drug release studies from the collagen scaffold exhibited the burst release of 44%, exerted immediate chemo prophylaxis and sustained delivery for 72Â h. The MTT assay and fluorescent labeling with calcein AM indicated that the DHB-MS is biocompatible to human foreskin fibroblasts. Thus the system developed provides wider scope to control the pathogens involved in infection and also the excess matrix degradation.