Article ID Journal Published Year Pages File Type
5820978 International Journal of Pharmaceutics 2012 4 Pages PDF
Abstract

The formation of a hybrid-nanocomposite using α-glucosyl stevia (Stevia-G) and surfactant was explored to improve the dissolution of flurbiprofen (FP). As reported previously, the dissolution amount of FP was enhanced in the presence of Stevia-G, induced by the formation of an FP and Stevia-G-associated nanostructure. When a small amount of sodium dodecyl sulfate (SDS) was present with Stevia-G, the amount of dissolved FP was extremely enhanced. This dissolution-enhancement effect was also observed with the cationic surfactant of dodecyl trimethyl ammonium bromide, but not with the non-ionic surfactant of n-octyl-β-d-maltopyranoside. To investigate the dissolution-enhancement effect of Stevia-G/SDS mixture, the pyrene I1/I3 ratio was plotted versus the Stevia-G concentration. The pyrene I1/I3 ratio of Stevia-G/SDS mixture had a sigmoidal curve at lower Stevia-G concentrations compared to the Stevia-G solution alone. These results indicate that the Stevia-G/SDS mixture provides a hydrophobic core around pyrene molecules at lower Stevia-G concentrations, leading to nanocomposite formation between Stevia-G and SDS. The nanocomposite of Stevia-G/SDS showed no cytotoxicity to Caco-2 cells at a mixture of 0.1% SDS and 1% Stevia-G solution, whereas 0.1% SDS solution showed high toxicity. These results suggest that the nanocomposite formation of Stevia-G/SDS may be useful way to enhance the dissolution of poorly water-soluble drugs without special treatment.

Graphical abstractDownload high-res image (214KB)Download full-size image

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, , , ,