Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5823450 | Biochemical Pharmacology | 2014 | 31 Pages |
Abstract
Increasing evidence indicates that cancer cells rewire their metabolism during tumorigenesis. The high intracellular levels of lactate and reactive oxygen species (ROS) generated during enhanced aerobic glycolysis and mitochondrial oxidative phosphorylation respectively led to oxidative stress. The detoxification of these accumulating metabolites and the equilibrium between reduced and oxidized nicotine adenine dinucleotide (NADH and NAD+) are two prominent mechanisms regulating redox status and hence energy homeostasis in tumors. Targeting both processes may thus be selectively cytotoxic for cancer cells. In this context, the impact of poly(ADP-ribose) polymerase (PARP) inhibitors, a class of anticancer agents employed for the treatment of DNA repair deficient tumors, on energy homeostasis and mitochondrial respiration regulation has potential clinical implications. Here we provide an overview of the metabolic reprogramming occurring in cancer cells and discuss the translational perspectives of targeting tumor metabolism and redox balance for antineoplastic therapy.
Keywords
MCTPOLGmTORIDHHDAC3-bromopyruvateGSSGRNSSOD2GSTPARPSIRTsirtuinNAMPTEGFRnicotinamide mononucleotide adenylyltransferaseHIF1GSHPGC1αPPPNADPHPEITCPKM2LDHAFDANADPQPRT3-BrPAOxidized GSHPI3Kphosphatidylinositol-3-OH kinasemitochondrial DNA polymerase gammaNmnatROSadenosine 5′-triphosphateATPNicotinic acid phosphoribosyltransferaseIsocitrate dehydrogenaseParmonocarboxylate transportersFood and Drug AdministrationNon small cell lung cancerNSCLChypoxia inducible factor 1Lactate dehydrogenase Apentose phosphate pathwayNADHNADHomologous recombinationNitric oxidenicotinamide phosphoribosyltransferaseNicotinamidemammalian target of rapamycinhistone deacetylasePoly(ADP-ribose) polymerasereduced nicotinamide adenine dinucleotideGlutathioneglutathione S-transferasereactive nitrogen speciesReactive oxygen speciesEpidermal growth factor receptor
Related Topics
Health Sciences
Pharmacology, Toxicology and Pharmaceutical Science
Pharmacology
Authors
Judith Michels, Florine Obrist, Maria Castedo, Ilio Vitale, Guido Kroemer,