Article ID Journal Published Year Pages File Type
5823495 Biochemical Pharmacology 2013 11 Pages PDF
Abstract

Heat shock protein 90 (Hsp90) is a molecular chaperone engaging in multiple cellular signaling by stabilizing oncoproteins (e.g. Akt and c-Raf) in tumor cells. Whereas Hsp90 inhibitors such as 17-AAG exert promising antitumor effects in clinical trials, current efforts focus on developing agents targeting Hsp90 with improved efficacy and lower toxicity. Using a fluorescence polarization assay, we screened over a hundred of synthetic small molecules and identified a resorcinol derivative LD053 that bound the Hsp90 ATP-binding pocket. The binding of LD053 to Hsp90 dissociated the co-chaperone protein cdc37 from Hsp90, resulting in destabilization of Akt and c-Raf and subsequent inhibition of PI3K/Akt and c-Raf/Mek/Erk signaling in BGC823 gastric cancer cells. As a consequence, LD053 decreased cancer cell viability and induced apoptosis evidenced by increased subG0/G1 cell population and increased cleavage of caspase 3 and PARP. Interestingly, normal human cells appeared insensitive to LD053 treatments. Consistent with its in vitro anticancer activities, LD053 significantly inhibited growth of BGC823 xenografts in nude mice without apparent body weight loss. These results thus demonstrate that LD053 is a novel Hsp90 inhibitor and has potential to be used to treat gastric cancer.

Graphical abstractDownload full-size image

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, , , , , , , , ,