Article ID Journal Published Year Pages File Type
5823779 Biochemical Pharmacology 2012 9 Pages PDF
Abstract
Endothelial nitric oxide synthase (eNOS) mediates important vaso-protective and immunomodulatory effects. Aim of this study was to examine whether lignan derivatives isolated from the roots of the anti-inflammatory medicinal plant Krameria lappacea influence eNOS activity and endothelial nitric oxide (NO) release. The study was performed using cultured human umbilical vein endothelial cells (HUVECs) and HUVEC-derived EA.hy926 cells. Among the eleven isolated compounds only 2-(2,4-dihydroxyphenyl)-5-(E)-propenylbenzofuran (DPPB) was able to increase eNOS enzyme activity.DPPB (1-10 μM) treatment for 24 h induced a significant and dose-dependent increase in eNOS activity as determined by the [14C]l-arginine/[14C]l-citrulline conversion assay. Immunoblotting studies further revealed a time-dependent DPPB-induced increase in eNOS-Ser1177 and decrease in eNOS-Thr495 phosphorylation, as well as increased AMPK phosphorylation at Thr172, whereas Akt phosphorylation at Ser473 was not affected. Si-RNA-mediated knockdown of AMPK and inhibition of CaMKKβ by STO 609, as well as intracellular Ca2+ chelation by Bapta AM abolished the stimulating effect of DPPB on eNOS-Ser1177 and AMPK-Thr172 phosphorylation. Furthermore, we could show that DPPB increases intracellular Ca2+ concentrations assessed with the fluorescent dye Fluo-3-AM. DPPB enhances eNOS activity and endothelial NO release by raising intracellular Ca2+ levels and increases signaling through a CaMKKβ-AMPK dependent pathway.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, , , , , , , ,