| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 5843389 | Pharmacological Research | 2013 | 10 Pages |
Abstract
Airway hyperreactivity (AHR) is a major feature of asthmatic and inflammatory airways. Cigarette smoke exposure, and bacterial and viral infections are well-known environmental risk factors for AHR, but knowledge about the underlying molecular mechanisms on how these risk factors lead to the development of AHR is limited. Activation of intracellular mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB) and their related signal pathways including protein kinase C (PKC), phosphoinositide 3-kinase (PI3K) and protein kinase A (PKA) signaling pathways may result in airway kinin receptor upregulation, which is suggested to play an important role in the development of AHR. Environmental risk factors trigger the production of pro-inflammatory mediators such as tumor necrosis factor-α (TNF-α) and interleukins (ILs) that activate intracellular MAPK- and NF-κB-dependent inflammatory pathways, which subsequently lead to AHR via kinin receptor upregulation. Blockage of intracellular MAPK/NF-κB signaling prevents kinin B1 and B2 receptor expression in the airways, resulting in a decrease in the response to bradykinin (kinin B2 receptor agonist) and des-Arg9-bradykinin (kinin B1 receptor agonist). This suggests that MAPK- and NF-κB-dependent kinin receptor upregulation can provide a novel option for treatment of AHR in asthmatic as well as in other inflammatory airway diseases.
Keywords
Related Topics
Health Sciences
Pharmacology, Toxicology and Pharmaceutical Science
Pharmacology
Authors
Yaping Zhang, Lars-Olaf Cardell, Lars Edvinsson, Cang-Bao Xu,
