Article ID Journal Published Year Pages File Type
5888373 Experimental and Molecular Pathology 2014 8 Pages PDF
Abstract

•Expression levels of CK8 and E-cad decreased, while those of vimentin, α-SMA, HSP27, SNAI1, type I and type III collagen increased in TGF-β1 induced A549 cells.•Ac-SDKP inhibited the transition of cultured A549 cells to myofibroblasts and attenuated collagen synthesis through modulating the expression of HSP27.

The synthetic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has been shown to be a modulator of molecular aspects of the fibrosis pathway. This study reveals that Ac-SDKP exerts an anti-fibrotic effect on human type II alveolar epithelial cells (A549), which are a source of myofibroblasts once exposed to TGF-β1, by decreasing the expression of heat shock protein 27 (HSP27). We used A549 cells in vitro to detect morphological evidence of epithelial-mesenchymal transition (EMT) by phase-contrast microscopy. Immunocytochemical and western blot analysis determined the distributions of cytokeratin 8 (CK8), α-smooth muscle actin (α-SMA), and SNAI1. Confocal laser scanning microscopy revealed a colocalization of HSP27 and SNAI1 on TGF-β1-induced A549 cells. These results also demonstrated that A549 cells became spindle-like when exposed to TGF-β1. Coincident with these morphological changes, expression levels of CK8 and E-cad decreased, while those of vimentin and α-SMA increased. This process was accompanied by increases in levels of HSP27, SNAI1, and type I and type III collagen. In vitro transfection experiments demonstrated that the inhibition of HSP27 in cultured A549 cells could decrease the expression of SNAI1 and α-SMA while increasing the expression of E-cad. A noticeable reduction in collagen types I and III was also evident. Our results found that Ac-SDKP inhibited the transition of cultured A549 cells to myofibroblasts and attenuated collagen synthesis through modulating the expression of HSP27.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Clinical Biochemistry
Authors
, , , , , , , , , ,