Article ID Journal Published Year Pages File Type
5928619 American Heart Journal 2013 10 Pages PDF
Abstract

BackgroundMost heart failure (HF) risk stratification models were developed for inpatient use, and available outpatient models use a complex set of variables. We hypothesized that routinely collected clinical data could predict the 6-month risk of death and all-cause medical hospitalization in HF clinic outpatients.Methods and ResultsUsing a quality improvement database and multivariable Cox modeling, we derived the Heart Failure Patient Severity Index (HFPSI) in the University of Michigan HF clinic (UM cohort, n = 1,536; 314 reached primary outcome). We externally validated the HFPSI in the Ann Arbor Veterans' Affairs HF clinic (VA cohort, n = 445; 106 outcomes) and explored “real-time” HFPSI use (VA-RT cohort, n = 486; 141 outcomes) by tracking VA patients for 6 months from their most recently calculated HFPSI, rather than using an arbitrary start date for the cohort. The HFPSI model included blood urea nitrogen, B-type natriuretic peptide, New York Heart Association class, diabetes status, history of atrial fibrillation/flutter, and all-cause hospitalization within the prior 1 and 2 to 6 months. The concordance c statistics in the UM/VA/VA-RT cohorts were 0.71/0.68/0.74. Kaplan-Meier curves and log-rank testing demonstrated excellent risk stratification, particularly between a large, low-risk group (40% of patients, 6-month event rates in the UM/VA/VA-RT cohorts 8%/12%/12%) and a small, high-risk group (10% of patients, 6-month event rates in the UM/VA/VA-RT cohorts 57%/58%/79%).ConclusionsThe HFPSI uses readily available data to predict the 6-month risk of death and/or all-cause medical hospitalization in HF clinic outpatients and could potentially help allocate specialized HF resources within health systems.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , ,