Article ID Journal Published Year Pages File Type
595469 Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009 8 Pages PDF
Abstract

The dispersion effect of carbon nanotubes (CNTs) in aqueous solutions by a silicon surfactant (ethoxy modified trisiloxane, named Ag-64) was investigated in detail using experimental method and molecular dynamics simulation. The Si–O–Si chain of silicon surfactant was flexible due to long Si–C bond and it could easily wrap onto the surface of CNTs through hydrophobic and other intermolecular interactions. The hydrophilic part of PEO provided the CNTs dispersed in the aqueous solution and prevented CNTs from aggregating in water through steric stabilization. It was found that Ag-64 could disperse CNTs with different diameters and it was an effective dispersing agent. The results of molecular dynamics simulation indicated that Ag-64 molecules could wrap onto the surface of CNTs leading to steric stabilization so that it could well disperse CNTs, and Van der Waals attraction was the dominating force of Ag-64 adsorbing onto CNTs. Our study may provide experimental and theoretical basis for using silicon surfactants to disperse CNTs, which can open the avenue of new applications for silicon surfactants.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , ,