Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
595870 | Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2009 | 5 Pages |
Abstract
Aminated polystyrene resins (NDA-101 and NDA-103) were synthesized, and their adsorption performances for phenol in aqueous solution were investigated and compared with the commercial polystyrene resin (Amberlite XAD-4) and weakly basic polystyrene resin (Amberlite IRA-96). All the associated adsorption isotherms are well described by Freundlich and Langmuir equations. The results indicated that all the four resins spontaneously adsorb phenol driven mainly by enthalpy change, and their adsorption capacities, free energy changes, enthalpy changes, and entropy changes for phenol followed the same order as: NDA-101Â >Â NDA-103Â >Â XAD-4Â >Â IRA-96. Surface energy heterogeneity analysis by Do's model also suggested that the surfaces of XAD-4 and IRA-96 were more homogeneous, and the better adsorption capacity and affinity of the aminated resins (NDA-101 and NDA-103) are probably due to their multiple hydrogen bonding and Ï-Ï stacking interactions with phenol molecule.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Colloid and Surface Chemistry
Authors
Weiming Zhang, Qiong Du, Bingcai Pan, Lu Lv, Changhong Hong, Zhengmao Jiang, Deyang Kong,