Article ID Journal Published Year Pages File Type
598357 Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006 16 Pages PDF
Abstract

Particle–particle separation in biotechnology has gained interest over the years due to the large number of processes that yield particle mixtures. Direct isolation of the product-containing particles is a logical and efficient downstream processing route in these processes. Dissolved-air flotation is applicable for these separations when the particles that require separation have different interactions with the air bubbles and/or differ in aggregation behaviour.In this work, model particles consisting of micrometer-sized protein-coated polystyrene particles were used to investigate the requirements for the application of dissolved-air flotation for particle–particle separation in biotechnology. These model particles have heterogeneous surfaces with surface groups (brushes) that extend out into the solution. Therefore, steric (or brush) repulsion and so-called hydrophobic interactions between the particles need to be taken into account. The flotation behaviour of the protein-coated particles was related to the size of the aggregates and the foaming behaviour of the proteins. Prediction of their aggregation behaviour was performed on the basis of calculations of the Van der Waals, electrostatic, hydrophobic and brush interactions. The brush interaction force proves to be essential for the prediction of the aggregation behaviour of the particles.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , ,