Article ID Journal Published Year Pages File Type
6014 Biomaterials 2014 12 Pages PDF
Abstract

Myo-Inositol (INO) is a biomolecule with crucial functions in many aspects. In this study, hyperbranched copolymers for gene delivery were synthesized based on inositol and low molecular weight polyethylenimine. The capacity of INO-PEIs to load plasmid DNA and their biocompatibility was demonstrated. A tumor target ligand, folic acid (FA), which was widely used for drug delivery systems, was subsequently conjugated to INO-PEIs and resulted in INO-PEI-FA copolymers. The polymers were then evaluated on their activity to mediate transgene expression in mammalian cell lines. As indicated, INO-PEIs were able to mediate efficient transgene expression, which was particularly noticeable in carcinoma cell line HeLa. INO-PEI-FA further improved the efficiency in HepG2. Distribution of INO-PEI-FA polymers in non-carcinoma NIH 3T3 and carcinoma HeLa cell lines was discussed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,