Article ID Journal Published Year Pages File Type
6021106 Journal of Neuroimmunology 2011 11 Pages PDF
Abstract
Suppressors of cytokine signaling (SOCS) negatively regulate the immune response, primarily by interfering with the JAK/STAT pathway. We have developed a small peptide corresponding to the kinase inhibitory region (KIR) sequence of SOCS-1, SOCS1-KIR, which inhibits kinase activity by binding to the activation loop of tyrosine kinases such as JAK2 and TYK2. Treatment of SJL/J mice with SOCS1-KIR beginning 12 days post-immunization with myelin basic protein (MBP) resulted in minimal symptoms of EAE, while most control treated mice developed paraplegia. SOCS1-KIR treatment suppressed interleukin-17A (IL-17A) production by MBP-specific lymphocytes, as well as MBP-induced lymphocyte proliferation. When treated with IL-23, a key cytokine in the terminal differentiation of IL-17-producing cells, MBP-sensitized cells produced IL-17A and IFNγ; SOCS1-KIR was able to inhibit the production of these cytokines. SOCS1-KIR also blocked IL-23 and IL-17A activation of STAT3. There is a deficiency of SOCS-1 and SOCS-3 mRNA expression in CD4+ T cells that infiltrate the CNS, reflecting a deficiency in regulation. Consistent with therapeutic efficacy, SOCS1-KIR reversed the cellular infiltration of the CNS that is associated with EAE. We have shown here that a SOCS-1 like effect can be obtained with a small functional region of the SOCS-1 protein that is easily produced.
Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , , , , , ,