Article ID Journal Published Year Pages File Type
6027041 NeuroImage 2014 14 Pages PDF
Abstract
We show that while still maintaining correspondence across subjects, p-Eigen extracts biologically-relevant and patient-specific functional parcels that facilitate hypothesis-driven network analysis. We construct default mode network (DMN) connectivity graphs using p-Eigen refined ROIs and use them in a classification paradigm. Our results show that the functional connectivity graphs derived from p-Eigen significantly aid classification of mild cognitive impairment (MCI) as well as the prediction of scores in a Delayed Recall memory task when compared to graph metrics derived from 1) standard registration-based seed ROI definitions, 2) totally data-driven ROIs, 3) a model based on standard demographics plus hippocampal volume as covariates, and 4) Ward Clustering based data-driven ROIs. In summary, p-Eigen incarnates a new class of prior-constrained dimensionality reduction tools that may improve our understanding of the relationship between MCI and functional connectivity.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , , , ,