Article ID Journal Published Year Pages File Type
606752 Journal of Colloid and Interface Science 2015 7 Pages PDF
Abstract

HypothesisLiquid crystalline precursors, which are in situ gelling nanostructured surfactant systems, can undergo phase transition in aqueous solution and become more structured aggregates, controlling release of larvicides and acting as biotechnology alternatives for dengue control. Such systems can contain bioactive substances as Citrus sinensis essential oil (CSEO) which exhibits biological activity against Aedes aegypti (Ae. aegypti) larvae.ExperimentsThe formulations were composed by fixed concentration of CSEO stabilized by Polyoxypropylene (5) Polyoxyethylene (20) Cetyl Ether (PPG-5 CETETH-20): oleic acid (OA) 2:1, increasing water content. The phase diagram was established and systems structure was evaluated by polarized light microscopy (PLM), small angle X-ray scattering (SAXS) and rheology. Median lethal concentration was determined against Ae. aegypti larvae.FindingsThe phase diagram exhibited four regions: liquid crystal (LC), emulsion, microemulsion (ME) and phase separation. The PLM and SAXS distinguished microemulsions, lamellar and hexagonal LC structures. Flow and oscillatory tests showed that increasing water content increases elasticity from Newtonian to non-newtonian behavior confirming the in situ gelation behavior. The larvicidal activity of formulations indicates that these nanostructured systems improved the oil solubility in aqueous medium and in addition are potential environmental larvicide against Ae. aegypti larvae.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (83 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , , , , ,