Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
608461 | Journal of Colloid and Interface Science | 2012 | 7 Pages |
A new type of drug delivery system (DDS) involved chitosan (CHI) modified single walled carbon nanotubes (SWNTs) for controllable loading/release of anti-cancer doxorubicin (DOX) was constructed. CHI was non-covalently wrapped around SWNTs, imparting water-solubility and biocompatibility to the nanotubes. Folic acid (FA) was also bounded to the outer CHI layer to realize selective killing of tumor cells. The targeting DDS could effectively kill the HCC SMMC-7721 cell lines and depress the growth of liver cancer in nude mice, showing superior pharmaceutical efficiency to free DOX. The results of the blood routine and serum biochemical parameters, combined with the histological examinations of vital organs, demonstrating that the targeting DDS had negligible in vivo toxicity. Thus, this DDS is promising for high treatment efficacy and low side effects for future cancer therapy.
Graphical abstractA highly effective targeted DDS based on chitosan and folic acid modified single walled carbon nanotubes for controllable loading/release of anti-cancer agent doxorubicin was constructed. The obtained DDS not only effectively killed the HCC SMMC-7721 cell lines and depressed the growth of liver cancer, but also displayed much less in vivo toxicity than free doxorubicin..Figure optionsDownload full-size imageDownload high-quality image (89 K)Download as PowerPoint slideHighlights► We construct FA/CHI/SWNTs as tumor targeting delivery vehicles for doxorubicin. ► DOX/FA/CHI/SWNTs can effectively kill the SMMC-7721 liver cancer cell and depress the growth of liver cancer on nude mice rather than DOX. ► DOX/FA/CHI/SWNTs have less in vivo toxicity than DOX.