Article ID Journal Published Year Pages File Type
608559 Journal of Colloid and Interface Science 2011 8 Pages PDF
Abstract

The inverse opal hydrogel heterostructure (polyacrylamide (PAAm) (left side)–polyacrylic acid (PAA)/PAAm interpenetrating polymer network (IPN) (right side) is created by colloidal crystal templating. The two parts, PAAm and IPN, appear different structural colors due to the varied lattice constants and solvent response behaviors. The IPN part keeps red color and PAAm part shows different colors when the composition of the mixed solvent (ethanol and water) and crosslinking degree are changed. For example, as the ethanol content in the mixed solvents increases from 0% to 70%, the PAAm part color changes from red, yellow, green to blue when the PAAm crosslinking degree is 5 mol% or 1 mol%. Meanwhile, a large blue shift of about 200 nm can be realized covering almost the entire wavelength of visible light due to the decreased lattice spacing induced by the PAAm shrinkage. Thus, multi two-color patterns can be realized by changing the color of PAAm and the color of IPN remain red as background for contrast. Moreover, the IPN part can change from red to green by reducing the PAAm infiltration time in IPN part, which can realize the change from two-color pattern to one-color pattern at green region.

Graphical abstractInverse opal hydrogel heterostructure (PAAm–PAA/PAAm IPN) forms a permanent two-color pattern, which shows various color display by controlling the mixed solvent ratio and crosslinking degree.Figure optionsDownload full-size imageDownload high-quality image (152 K)Download as PowerPoint slideResearch highlights► Inverse opal hydrogel heterostructure (PAAm–PAA/PAAm IPN) forms a permanent two-color pattern. ► Multi two-color patterns are obtained by controlling the solvent ratio and crosslinking degree. ► Two-color pattern becomes one-color pattern by reducing the PAAm infiltration degree in IPN part.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,