Article ID Journal Published Year Pages File Type
609650 Journal of Colloid and Interface Science 2010 7 Pages PDF
Abstract

A modified emulsion copolymerization of phenylacetylene (PA) with hydrophilic monomers having different functions, i.e., acrylic acid (AA) and N,N-dimethylpropargylamine (DMPA) respectively, yields functionalized polymeric P(PA-co-AA) and P(PA-co-DMPA) nanoparticles. The systematic investigation on the experimental parameters affecting size, surface charge and polydispersity of the copolymers (initiator concentration, reaction time, cosolvent and PA/comonomer ratios) allows to modulate the nanoparticle physico-chemical properties. Spherical shaped particles with diameters in the range 80–500 nm, low polydispersity (PI values in the range 1.11–1.30) and different surface charge densities, between 0.44 and 2.87 μC/cm2, have been consistently obtained and characterized by means of Dynamic Light Scattering (DLS), laser Doppler electrophoretic and Scanning Electron Microscopy (SEM) studies. XPS measurements have provided information on the nanoparticles chemical surface structure and suggest that AA and DMPA units are preferentially distributed on the surface of the spheres. The nanospheres self-assemble giving large domains (9.5 × 14.5 μm). Photonic analysis of the self-assembled copolymeric nanoparticles has been performed by means of Spectroscopic Ellipsometry (SE) and Bragg reflection spectroscopy, both of them demonstrating a three-dimensional photonic crystal property of these systems.

Graphical abstractEmulsion copolymerization of phenylacetylene (PA) with acrylic acid (AA) or N,N-dimethylpropargylamine (DMPA) produces functionalized nanoparticles (diameters 80–500 nm) with superficial charge density and three-dimensional photonic crystals property.Figure optionsDownload full-size imageDownload high-quality image (65 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , , , , ,