Article ID Journal Published Year Pages File Type
609868 Journal of Colloid and Interface Science 2010 7 Pages PDF
Abstract

Polyelectrolyte multilayers (PEMs) composed of two natural polysaccharides-chitosan (Chi) and alginate (Alg) were deposited by Layer by layer (LbL) assembly on top of biocompatible poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs). Folic acid (FA) or FA grafted poly(ethylene glycol) (PEG–FA) were covalently bounded to the PEMs via carbodiimide chemistry. The assembly of biocompatible PEMs was monitored on planar surfaces by means of the quartz crystal microbalance with dissipation (QCM-D) technique and on top of PLGA NPs by means of ζ-potential measurements. BSA was used as model protein to characterize protein adsorption on PEMs. QCM-D showed protein deposition could not be observed on the Chi/Alg multilayer, for both Chitosan and Alginate as top layers. Finally, cellular uptake experiments were carried out by co-culture of HepG2 cells in presence of NPs. Flow Cytometry and confocal laser scanning microscopy (CLSM) were used to investigate the influence of the surface chemistry of the NPs on uptake. For the HepG2 cell line significantly less uptake of PLGA NPs coated with Chi/Alg than the bare NPs was observed but the uptake increased after attachment of FA molecules.

Graphical abstractPoly(lactide-co-glycolide) (PLGA) nanoparticles surface engineered with a self assembled Layer by layer chitosane and alginate film and Folic acid display selective targeting for cancer cell lines.Figure optionsDownload full-size imageDownload high-quality image (39 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , ,