Article ID Journal Published Year Pages File Type
610228 Journal of Colloid and Interface Science 2010 7 Pages PDF
Abstract

The mixed micellar behavior of anionic surfactant, sodium dodecylsulfate (SDS) and cationic surfactant, dodecylethyldimethylammonium bromide (DDAB) at varying mole fractions of DDAB, i.e. αDDAB in aqueous solution of papain has been investigated with the aid of spectroscopy and physiochemical measurements. Thermodynamic parameters have been computed over the entire mole fraction range of DDAB. The Clint equation and the regular approximation method have been used to investigate the interactions between mixed surfactants in the presence of protein. The two surfactants have similar tails, however, the charges on respective polar head groups are expected to have significant effect on their colloidal behavior. The cmc values of mixed surfactants have been estimated from fluorescence, conductivity, surface tension, ultrasonic speed and density measurements. The results show that lower and higher mole fractions of DDAB give negative departure from ideality whereas intermediate mole fractions have positive deviation. The aggregation number, Nagg of mixed micelles has also been calculated. The turbidity or cloudiness at intermediate mole fractions demonstrates a reduction in the background free monomer concentration due to neutralization of the monomers of opposite charge. The effect of concentration of papain on mixed micellar behavior indicates that with increase in the concentration of protein, the cac and cmc values increase. The unfolding of polypeptide chain in the presence of mixed surfactant has been observed.

Graphical abstractThe interactions between papain and SDS–DDAB have been explored by using spectroscopy and physico-chemical methods. The polar head group of surfactant has been found to have a profound effect on papain.Figure optionsDownload full-size imageDownload high-quality image (105 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,