Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
610450 | Journal of Colloid and Interface Science | 2009 | 8 Pages |
Cyclic voltammetric (CV) techniques have been employed to study the mixed micellar behavior of binary mixtures of triblock polymers (TBP) such as F127+P85, F127+P85, F88+P85, and F88+P123 using 2,2,6,6-tetramethyl-1-piperidinyloxy (Tempo) as an electroactive probe. Critical micellar concentration (cmc) has been obtained for pure triblock polymers and their mixed systems from the plots of peak current (ip) variation versus the total concentration. Diffusion coefficients of the electroactive species have been determined from the Randles–Sevcik equation. The interaction parameter (β) for the mixed micelles was obtained from the regular solution theory. The values of β suggest that the synergism does exist especially with the F88+P123 system. Cloud point measurements have also been made on the binary mixtures of triblock polymers following similar mixing criteria. An effort has been made to correlate the micellar behavior and phase separation (cloud point) phenomenon. From the correlation, it can be concluded that in the systems studied, an increase in cmc increases the cloud point of mixed systems of triblock polymers.
Graphical abstractIn the present work, investigations on micellization and demicellization properties of triblock polymer mixtures (F88/F127+P85/P123) have been undertaken using cyclic voltammetric and cloud point measurements.Figure optionsDownload full-size imageDownload as PowerPoint slide