Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
611216 | Journal of Colloid and Interface Science | 2008 | 5 Pages |
Cubically shaped cobalt oxide nanoparticle catalysts were used for the first time to investigate the melting of the nanoparticle catalysts responsible for the synthesis of silica nanocoils at 1050 °C and straight nanowires at 1100 °C. Cobalt nanoparticles remained morphologically highly anisotropic after the growth of nanocoils at 1050 °C, whereas they became predominately spherical after straight nanowires were made at 1100 °C. These results strongly indicated that cobalt nanoparticles responsible for the synthesis of straight nanowires were completely molten and that melting occurred to these nanoparticles between 1050 and 1100 °C.
Graphical abstractTransformation of cubically shaped cobalt nanoparticle catalysts from room temperature to 1100 °C: The reduction occurs at below 600 °C, and total melting occurs between 1050 and 1100 °C.Figure optionsDownload full-size imageDownload as PowerPoint slide