Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
611467 | Journal of Colloid and Interface Science | 2008 | 6 Pages |
Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.
Graphical abstractThe Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance for methanol electrooxidation than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75.Figure optionsDownload full-size imageDownload as PowerPoint slide