Article ID Journal Published Year Pages File Type
611482 Journal of Colloid and Interface Science 2008 6 Pages PDF
Abstract

In the cloud point extraction (CPE) process with PEG/PPG-18/18 dimethicone, the flexible chain structure of the silicone surfactant efficiently decreased the water content remaining in the surfactant-rich phase, compared with conventional nonionic surfactants, represented by Triton X-114. Meanwhile, the phase volume ratio of surfactant-rich phase to aqueous phase obtained in the silicone surfactant CPE system was found to be maintained at a low value with increasing surfactant concentration; whereas a rapid increase tendency was commonly observed in that of other nonionic surfactants. Based on these advantages, the equilibrium partition of three polycyclic aromatic hydrocarbons (PAHs), anthracene, phenanthrene and pyrene, was studied in the CPE process with PEG/PPG-18/18 dimethicone. Equilibrium parameters, including preconcentration factor, distribution coefficient and recovery, were determined, and the performance was compared with that of another related CPE research, where Tergitol 15-S-7 was used. Due to the low surfactant-rich phase volume, higher concentrations of the three PAHs in the surfactant-rich phase, and the resulting higher preconcentration factors and distribution coefficients were able to be achieved at the same time. Moreover, the great performance was able to be maintained even at a high surfactant concentration or PAHs initial concentration.

Graphical abstractPEG/PPG-18/18 dimethicone offered a much lower water content in the surfactant-rich phase and a sustained phase volume ratio in cloud point extractions of PAHs.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,