Article ID Journal Published Year Pages File Type
611566 Journal of Colloid and Interface Science 2007 15 Pages PDF
Abstract

Nonspherical particles, such as fractal-like aggregates emitted by diesel engines, are commonly met in the ambient air. Some of them are believed to be carcinogenic to humans, thus their efficient removal is of crucial practical importance. A fibrous filter is the device commonly used for aerosol purification but the literature lacks experimental data concerning aggregates filtration. Effect of aggregates' parameters (fractal dimension, primary particle radius) as well as fiber diameter and air velocity on the filtration efficiency is investigated theoretically using the modified Brownian dynamics method. Three different expressions for the friction coefficient evaluation for the aggregates were examined. The results obtained indicate that structure of an aggregate, filter structure and process conditions strongly influence the aggregates deposition efficiency, which significantly differs from the values determined for mass-equivalent spherical particles. The results determined using the Brownian dynamics approach were compared with the values calculated using classical single fiber theory and noticeable discrepancy was observed for the most penetrating particles, while both approaches agree for the limiting cases of small or large particles. Peclet number based on the mobility radius and the interception parameter based on the outer radius are the proper criteria to describe diffusional and deterministic deposition of aggregates.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,