Article ID Journal Published Year Pages File Type
611669 Journal of Colloid and Interface Science 2007 7 Pages PDF
Abstract

Mesoporous TiO2 materials with various pore-size distributions were synthesized by using diblock copolymers via a sol–gel process in aqueous solution. The properties of these materials were characterized by FE-SEM, HR-TEM, XRD, DRS, BET, and BJH analysis. All particles have spherical morphology with a diameter range of 1–3 μm. The mesoporous TiO2 materials calcined at 400 °C were found to have different specific surface areas—186, 210, and 192 m2 g−1—and average pore sizes depending on the type of diblock copolymer—5.1, 6.1, and 6.4 nm—and their crystallite sizes were found to be 8.1, 8.3, and 8.8 nm. The photocatalytic activity of each sample was investigated by measuring the photodecomposition of methylene blue (MB), and the small crystallite size, large surface area, and small pore size were found to exhibit better photocatalytic activities. In addition, the photocatalytic activities of all the mesoporous TiO2 materials were found to be better than that of commercial TiO2.

Graphical abstractVarious crystallite sizes, surface areas, and pore sizes of mesoporous TiO2 materials were synthesized from diblock copolymers via a sol–gel process in aqueous solution. The mesoporous TiO2 materials with small crystallite sizes, large surface areas, and small pore sizes were found to exhibit better photocatalytic activities. In addition, they show better photocatalytic activity compared to commercial TiO2.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,