Article ID Journal Published Year Pages File Type
611775 Journal of Colloid and Interface Science 2007 9 Pages PDF
Abstract

Adsorption kinetics of surfactants on solid surfaces has been studied by using computer simulation. Both bulk surfactant concentration and diffusion region are explicitly integrated in our model. Depending on the head–surface interaction, our simulation results indicate that there exist two different kinetic modes in adsorption process of surfactants on solid surfaces. One is the four-regime mode and the other is step-wise mode. For the strongly attractive head–surface interaction, four distinct regimes of surfactant adsorption are found: a diffusion-controlled regime, a self-assembly controlled regime, an intermediate coverage regime and a saturated regime. In particular, the adsorption in second regime displays a power-law time dependence with an exponent unrelated to bulk concentrations and diffusion coefficients. While for the weaker adsorption surfaces, the step-wise mode is found. The mode includes a low-coverage nucleation regime and the saturated regime after a sudden aggregation of surfactants on the substrates which occurs stochastically. Besides the head–surface interaction, in this work, the effects of surfactant diffusivity, bulk concentration, the length of diffusion zone and surfactant architecture on the adsorption kinetics are also considered. The simulated adsorption kinetics is compared qualitatively with experimental results.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,