Article ID Journal Published Year Pages File Type
611796 Journal of Colloid and Interface Science 2007 8 Pages PDF
Abstract

Sputtered oxidized molybdenum surfaces were exposed at room temperature for different times to paraffin vapors obtained at 150 °C. Scanning polarization force microscopy (SPFM), optical and confocal microscopy were used to characterize the surfaces. The condensed morphologies are complex and strongly dependent upon the quantity of vapor molecules deposited on the substrate surface. A thin paraffin film is initially formed and quite uniform nano-height drops are nucleated randomly over it within 10–20 s time exposures. Their average contact angle ranged between 1°–2.5°. Further vapor deposition led to a more complex regime where nano-height drops do not show a clear interface with the film, while micro-sized drops do. The tangent approximation method adopted by Salmeron and Xu for the nano-drop regimes was extended to the micro-sized drop regime obtaining an averaged effective contact angle equal to 4°–5°. Both nano-height and micro-sized drops shape and effective contact angles have been discussed taking into account their interactions between the film and the drops.

Graphical abstractThe adsorption of paraffin vapor oil on oxidized molybdenum surface lead to complex morphologies, where nano-film, nano-drops, micro-drops and bulk liquid islands are coexisting. Effective contact angles of nano- and micro-drops have been discussed taking into account interactions between film and drops.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,