Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
611840 | Journal of Colloid and Interface Science | 2008 | 6 Pages |
Mesoporous MnO2 has been synthesized by means of a novel, facile, and template-free method by virtue of a soft interface between CCl4 and H2O without any surfactants or organometallic precursors or ligands. X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy analysis, scanning electron microscopy, and an ASAP2010 autoadsorption analyzer were applied to investigate the composition and microstructure of the as-synthesized MnO2. The structure characterizations indicated a good mesoporous structure for as-prepared MnO2 with an adsorption average pore diameter of 9.7 nm, mesoporous volume of 0.58 cm3 g−1, and Brunauer–Emmett–Teller specific surface area of 239 m2 g−1. Electrochemical properties of the mesoporous MnO2 were elucidated by cyclic voltammograms, galvanostatic charge–discharge, and electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte. Electrochemical data analysis demonstrated that as-synthesized MnO2 had good capacitive behavior due to its unique mesoporous structure. A specific capacitance of ca. 220 F g−1 could still be delivered for the mesoporous MnO2 even at a scan rate of 100 mV s−1.
Graphical abstractMesoporous MnO2 with good electrochemical performance has been synthesized by means of a facile and template-free method by virtue of soft interface between CCl4 and H2O.Figure optionsDownload full-size imageDownload as PowerPoint slide