Article ID Journal Published Year Pages File Type
612002 Journal of Colloid and Interface Science 2007 5 Pages PDF
Abstract

Superhydrophobic surfaces have been prepared from nanostructured zinc oxide layers by a treatment with fatty acid molecules. The layers are electrochemically deposited from an oxygenated aqueous zinc chloride solution. The effects of the layer's structure, from a dense film to that of a nanorod array, as well as that of the properties of the fatty acid molecules based on C18 chains are described. A contact angle (CA) as high as 167° is obtained with the nanorod structure and the linear saturated molecule (stearic acid). Lower values are found with molecules having an unsaturated bond on C9, in particular with a cis conformation (140°). These results, supplemented by infrared spectroscopy, indicate an enhancement of the sensitivity to the properties of the fatty acid molecules (conformation, flexibility, saturated or not) when moving from the flat surface to the nanostructured surface. This is attributed to a specific influence of the structure of the tops of the rods and lateral wall properties on the adsorption and organization of the molecules. CA measurements show a very good stability of the surface in time if stored in an environment protected from UV radiations.

Graphical abstractEffect of nanorod structure and conformation of fatty acids on ZnO superhydrophobicity.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , ,