Article ID Journal Published Year Pages File Type
612007 Journal of Colloid and Interface Science 2007 7 Pages PDF
Abstract

Adsorption of acidified multiwalled carbon nanotubes (MWCNTs) to heavy metal using Pb(II) as a model was investigated and characterized by many techniques. The main adsorption mechanism of acidified MWCNTs to Pb(II) is proposed on the basis of adequate analysis. The results show that the oxygenous functional groups can be formed on MWCNTs after MWCNTs were treated by concentrated nitric acid. The oxygenous functional groups play an important role in Pb(II) adsorption to form chemical complex adsorption, which accounts for 75.3% of all the Pb(II) adsorption capacity. The Pb(II) in the form of PbO, Pb(OH)2, and PbCO3 adsorbed on the surface of the acidified MWCNTs is only 3.4% of the total Pb(II) adsorption capacity. The Pb(II) species adsorbed on acidified MWCNTs mainly aggregate on the ends and at the defects sites on the acidified MWCNTs.

Graphical abstractThe oxygenous functional groups on the surface of acidified multiwalled carbon nanotubes play important role for Pb(II) adsorption, which accounts for 75.3% of all the Pb(II) adsorption capacity.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , ,