Article ID Journal Published Year Pages File Type
612164 Journal of Colloid and Interface Science 2007 8 Pages PDF
Abstract

The modification of sodium montmorillonite (NaMMT) through the insertion of amphiphilic hexadecylammonium cations into the clay's interlayer spaces has been studied. Alkylammonium concentrations equivalent to 0.15–3.00 times the cation exchange capacity of the clay were used. The conformation of the surfactant cations in the confined space of the silicate galleries was investigated by X-ray diffraction analysis and scanning electron microscopy, while the organoclay's thermal stability was examined by thermogravimetric analysis. The clay's surface properties induced by the ion-exchange process were followed by measurements of the mineral's zeta potential as a function of pH and surfactant concentration, while the coagulation rates of organoclay suspensions in water and in chloroform were examined using dynamic light scattering. All the results are consistent with showing that the overall characteristics and thus the behavior of the modified MMT particles strongly depend on the alkylammonium surfactant concentration used in the modification process. This, however, has very important implications for any attempt to incorporate the organomodified MMT particles into different media for various applications such as polymer nanocomposite preparation.

Graphical abstractInfluence of the surfactant concentration (related to the clay CEC) on the coagulation rate of montmorillonite particles dispersed in water.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , ,