Article ID Journal Published Year Pages File Type
612592 Journal of Colloid and Interface Science 2006 8 Pages PDF
Abstract

A model is proposed to account for the interaction energy and adhesion force between petroleum asphaltenes and metallic surfaces. It is assumed that the total molecule-surface interaction potential may be constructed through superposition of corresponding interactions with a relevant number of atomic layers forming the substrate and resorting to the Lindhard continuum planar potential (CPP) approximation, which requires only of knowledge of binary molecule-atom interactions. Molecular mechanics (MM) calculations are performed to generate the average binary interaction between the asphaltene molecule and an atom in the substrate, which in turn is represented by a parameterized analytical—physically sound—expression. The resulting CPP yields an analytical expression representing the interaction between the asphaltene molecule and each substrate layer. To validate the method, pilot calculations are performed for a sample asphaltene molecule with a fixed orientation relative to metallic surfaces of iron, aluminum, and chromium. Comparison between corresponding CPP and MM calculations for the asphaltene-plane (A-P) and asphaltene-substrate (A-S) interactions indicate reasonable agreement pointing to the adequacy of the CPP method to represent molecule-surface interactions. Also, the effect of a surrounding (i.e., solvent) medium is addressed with the use of a dielectric constant, ε, incorporated in the molecule-atom potential. Finally, a discussion is presented on the applicability of the method to generate an analytical universal expression for asphaltene-metallic wall interactions.

Graphical abstractA model based on the continuum planar potential approximation is proposed to account for the interaction energy and adhesion force between petroleum asphaltenes and metallic surfaces.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , ,