Article ID Journal Published Year Pages File Type
612797 Journal of Colloid and Interface Science 2006 10 Pages PDF
Abstract

Amine-functionalized adsorbents have attracted increasing interest in recent years for heavy metal removal. In this study, diethylenetriamine (DETA) was successfully grafted (through a relatively simple solution reaction) onto poly(glycidyl methacrylate) (PGMA) microgranules to obtain an adsorbent (PGMA-DETA) with a very high content of amine groups and the PGMA-DETA adsorbent was examined for copper ion removal in a series of batch adsorption experiments. It was found that the PGMA-DETA adsorbent achieved excellent adsorption performance in copper ion removal and the adsorption was most effective at pH > 3 in the pH range of 1–5 examined. X-ray photoelectron spectroscopy (XPS) revealed that there were different types of amine sites on the surfaces of the PGMA-DETA adsorbent but copper ion adsorption was mainly through forming surface complexes with the neutral amine groups on the adsorbent, resulting in better adsorption performance at a higher solution pH value. The adsorption isotherm data best obeyed the Langmuir–Freundlich model and the adsorption capacity reached 1.5 mmol/g in the case of pH 5 studied. The adsorption process was fast (with adsorption equilibrium time less than 1–4 h) and closely followed the pseudo-second-order kinetic model. Desorption of copper ions from the PGMA-DETA adsorbent was most effectively achieved in a 0.1 M dilute nitric acid solution, with 80% of the desorption being completed within the first 1 min. Consecutive adsorption–desorption experiments showed that the PGMA-DETA adsorbent can be reused almost without any loss in the adsorption capacity.

Graphical abstractDiethylenetriamine (DETA) was successfully grafted, through a simple solution reaction, onto poly(glycidyl methacrylate) (PGMA) to obtain adsorbents with a high content of amine groups for effective adsorption of copper ions.Figure optionsDownload full-size imageDownload high-quality image (27 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,