Article ID Journal Published Year Pages File Type
612856 Journal of Colloid and Interface Science 2007 6 Pages PDF
Abstract

The state of water in the reverse micelles of C12-s-C12⋅2Br homologues has been investigated by Fourier transform infrared spectroscopy. The results showed that the solubilized water had four states: the quaternary ammonium head-group-bound, the Br−-bound, the bulklike, and the free water. With increasing W0W0, the number of bulklike water per surfactant (nbnb) rapidly increased, which indicated swelling of the reverse micelle. The number of the head-bound water per surfactant (nN+nN+) gradually increased. This was attributed to a reduction of the interfacial curvature, which permitted more water molecules to associate with the ionic heads of surfactants and also led to a part of n-hexanol being expelled from the interface and thus water filled up. Owing to the existence of n  -hexanol in the interface, the head-bound water of the present system was smaller than that of AOT system at the same W0W0. The number of counterion-bound water per surfactant (nBr−nBr−) remained unchanged with W0W0. This was due to much smaller dissociation of the head of C12-2-C12⋅2Br than that of AOT. With increasing s  , unchanged nN+nN+ is attributed to the comprehensive effects of enlarged head, which promotes the hydration, increased ionization degree, and reduced size of the water pool. Owing to increased ionization degree, nBr−nBr− increases with s.

Graphical abstractThe states of water solubilized in the cores of the reverse micelles of C12-s-C12⋅2Br homologues have been investigated by Fourier transform infrared spectroscopy. The results showed that the water in the reverse micelles of C12-s-C12⋅2Br had four states: the quaternary ammonium head-group-bound, the bulklike, the Br−-bound, and the free water.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , ,