Article ID Journal Published Year Pages File Type
612896 Journal of Colloid and Interface Science 2006 6 Pages PDF
Abstract

Various polypyrrole (PPy)–silica–methylcellulose nanocomposite particles were synthesized by suspension polymerization in the presence of silica nanoparticles controlling the ratio of pyrrole, silica, and methylcellulose during the polymerization. The electrorheological (ER) and dielectric properties of the sterically stabilized PPy–silica–methylcellulose nanocomposite suspensions were investigated. The ER response increases with the increase in the silica/pyrrole ratio. The ER behavior also depends on the methylcellulose amount during the polymerization. The yield stress initially increases with the methylcellulose amount, passes through a maximum, and then decreases with the methylcellulose amount. The dielectric constants and dc conductivities of the PPy–silica–methylcellulose nanocomposite particles and the dielectric properties of their suspensions indicate that the increased ER response arises from the enhanced interfacial and particle polarization which depends on the silica/pyrrole ratio and the methylcellulose amount during the polymerization.

Graphical abstractThe yield stress increases with the increase in the silica/pyrrole ratio and electric field strength. The ER response increase with the silica/pyrrole ratio may arise from the different degrees of polarization of the PPy–silica–methylcellulose nanocomposite particles of different silica/pyrrole ratios.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,