Article ID Journal Published Year Pages File Type
6130449 Clinical Microbiology and Infection 2014 25 Pages PDF
Abstract
The role of antibiotic exposure in the evolution and emergence of resistance is challenging to assess. We used carbapenem-resistant Pseudomonas aeruginosa (PA) phenotypes to assess possible factors that are associated with the occurrence and prognosis of such a phenotype and to examine the possible contribution of antibiotic exposure to the evolution of antimicrobial resistance. We conducted a nested case-control study. Cases were defined as patients from whom carbapenem-resistant ureidopenicillin-sensitive PA (CRUS-PA) was isolated; matched controls were PA patients who did not have isolation of CRUS-PA. We analysed potential predictors of CRUS-PA isolation and assessed their clinical significance (mortality and eventual isolation of pan-resistant PA), taking into account antibiotic exposures. We matched 800 case-control pairs. Case patients were more likely to have been exposed to anti-PA carbapenems (OR = 6.9; 95% CI, 2.5-18.6). This finding did not apply to the administration of other antibiotics. The mortality among CRUS-PA patients was similar to that of the controls (HR, 0.8 95%; CI, 0.6-1.1). Subsequent isolation of pan-resistant PA was more frequent among case patients compared with non-pan-resistant controls (p-value <0.05). Among cases, the risk of eventual pan-resistant PA isolation was increased in ertapenem recipients, only after and not prior to the index specimen date (HR, 1.9, 95%; CI, 1.01-3.4). Therefore we suggest that the CRUS-PA phenotype may represent pan beta-lactam resistance and that antibiotic exposure is associated with evolution of PA resistance phenotypes. We demonstrate a novel association of ertapenem with sequentially appearing PA resistance patterns.
Related Topics
Life Sciences Immunology and Microbiology Microbiology
Authors
, , , ,